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Abstract: We have constructed an anti-Simpson’s quadrature formula using Simp-
son’s 1

3
rd quadrature formula following the idea given by D. P. Laurie. An exten-

sion of this formula is developed by taking average linear combination with the
Simpson’s 1

3
rd quadrature formula. Through error analysis, we studied the the-

oretical dominance of this extended anti-Simpson’s quadrature formula over its
constituents. We accomplished numerical verification of the formula evaluating
test integrals including elliptic ones. We depict the novelty of the formula in both
non-adaptive and adaptive environments. In adaptive environment the dominancy
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of the rule over its constituents clarifies both in number of steps and error commit-
ted.

Keywords and Phrases: Simpson’s 1
3
rd quadrature formula (QS3(f)) , Anti-

Simpson’s 4-point quadrature formula (QaS4(f)) , Extended anti-Simpson’s quadra-
ture formula (DS1(f)) , Adaptive integration scheme, Elliptic integrals.
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1. Introduction
We have been using two methods, namely Richardson extrapolation and Kro-

nord extension to produce higher precision formulae. We take trapezoidal quadra-
ture formula and Gaussian quadrature formula as base formulae in Richardson
extrapolation and Kronord extension respectively [1, 4, 3, 5, 8, 14]. These meth-
ods are not easy to handle. On the other hand, if we use mixed quadrature method
to hike the precision, then we can easily accomplish this through very simple math-
ematical exercise [2, 9, 10, 11, 12, 13, 14, 15, 16].

In this paper, We wish to construct anti-Simpson’s quadrature formula using
the idea given by D. P. Laurie [7]. As Simpson’s 1

3
rd quadrature formula and

anti-Simpson’s 4-point quadrature formula are of same precision, we extend this
anti-Simpson’s quadrature formula by taking average linear combination with the
Simpson’s 1

3
rd quadrature formula. The extended anti-Simpson’s quadrature for-

mula is a new way of precision hiking. The idea of anti-Gaussian quadrature was
first used by Dirk P. Laurie [7]. Anti-Gaussian formula is (n+1) point quadrature
formula. Its degree of precision is (2n-1) and it integrates all polynomials upto
degree (2n+1) with an error equal in magnitude but of opposite in sign to that of
n point Gaussian formula. If

QaGn+1(f) =
n+1∑
i=1

λif(xi)

be (n+1)-point anti-Gaussian quadrature formula and QGn(f) the n point Gaussian
formula, then

I(f)−QaGn+1(f) = − (I(f)−QGn(f)) , f ∈ P2n+1 (1)

where f is a polynomial of degree≤ 2n+ 1 and I(f) is the exact value of the inte-
gral.
The contents of the paper are organized in the following manner. The section-
1 is introductory one. In section-2, Based on the principle adopted by Laurie,
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we develop the anti-Simpson’s quadrature formula from Simpson’s 1
3
rd quadra-

ture formula and evaluate the error due to the formula. In section-3, Using the
idea of mixed quadrature [2, 11, 12, 13, 14, 15, 16] an extension of the anti-
Simpson’s quadrature formula is developed by taking average linear combination
with the Simpson’s 1

3
quadrature formula. Section-4, deals with error analysis

showing the theoretical dominance of the extended anti-Simpson’s quadrature for-
mula over its constituent formulae. Section-5, includes numerical evaluation of
some test integrals including elliptic ones using Simpson’s 1

3
rd quadrature formula,

anti-Simpson’s quadrature formula, Boole’s quadrature formula, and extended anti-
Simpson’s quadrature formula in non-adaptive and adaptive mode. Section-7, re-
flects a brief conclusion about the potentiality of the extended anti-Simpson’s for-
mula.

2. Construction of anti-Simpson’s quadrature formula
We choose Simpson’s 1

3
rd quadrature formula QS3(f) :

I(f) =

∫ 1

−1

f(x)dx ∼= QS3(f) =
1

3
[f(−1) + 4f(0) + f(1)] (2)

We assume that anti-Simpson’s quadrature formula due to Simpson’s 1
3
rd quadra-

ture formula is a 4-point formula whose degree of precision is same as that of the
Simpson’s 1

3
rd quadrature formula i.e. 3. It is of the following form

QaS4(f) =
4∑

i=1

λif(xi) (3)

Simpson’s 1
3
rd quadrature formula is a closed type quadrature formula. Hence, anti-

Simpson’s 4-point quadrature formula eqn.(3) due to Simpson’s 1
3
rd quadrature

formula becomes

QaS4(f) = λ1f(−1) + λ2f(x2) + λ3f(x3) + λ4f(1) (4)

Here x1 = −1, x4 = 1 and having six unknowns namely λi for i = 1, 2, 3, 4 and xi

for i = 2, 3.
To determine these unknowns we use the Laurie’s condition eqn.(??) for n=3

to get
I(f)−QaS4(f) = − (I(f)−QS3(f))

for f(x) = xi, i = 0, 1, 2, 3, 4, 5.

⇒ QaS4(f) = 2I(f)−QS3(f) (5)
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In order to evaluate λi, for i = 1, 2, 3, 4 and xi for i=2,3 with f(x) = xi, i =
0, 1, 2, 3, 4, 5, we have following six equations

λ1 + λ2 + λ3 + λ4 = 2 (6)

−λ1 + λ2x2 + λ3x3 + λ4 = 0 (7)

λ1 + λ2(x2)
2 + λ3(x3)

2 + λ4 = 2/3 (8)

−λ1 + λ2(x2)
3 + λ3(x3)

3 + λ4 = 0 (9)

λ1 + λ2(x2)
4 + λ3(x3)

4 + λ4 = 2/15 (10)

−λ1 + λ2(x2)
5 + λ3(x3)

5 + λ4 = 0 (11)

Solving the system of equations we obtain, λ1 = −1
9
= λ4, λ2 =

10
9
= λ3, x2 =

√
2
5

and x3 = −
√

2
5
. Putting the above values in eqn.(4), we have

QaS4(f) =
1

9

[
10

{
f

(√
2

5

)
+ f

(
−
√

2

5

)}
− (f(−1) + f(1))

]
(12)

Eqn. (12) is the required anti-Simpson’s 4-point quadrature formula.

Theorem 1. Let f(x) contains derivative of all orders in the closed interval [−1, 1] .
Then the error EaS4(f) associated with the formula QaS4(f) is given by |EaS4(f)| ∼=
1
90

| f iv(0) |
Proof. Since f(x) is sufficiently differentiable function in the closed interval [−1, 1],
using Maclaurin’s expansion of f(x) one can obtain

I(f) =

∫ 1

−1

f(x)dx = 2f(0) +
1

3
f ii(0) +

2

5!
f iv(0) +

2

7!
f vi(0) + · · · (13)

and

QaS4(f) = 2f(0) +
1

3
f ii(0) +

2

15× 4!
f iv(0)− 2

25× 6!
f vi(0) + · · · (14)

Using eqn. (13) and eqn. (14), Error associated with anti-Simpson’s 4-point
quadrature formula is

EaS4(f) = I(f)−QaS4(f)

or

EaS4(f) =
1

90
f iv(0) +

64

7!× 25
f vi(0) + · · · (15)

So |EaS4(f)| ∼= 1
90

| f iv(0) |.
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3. Extension of anti-Simpson’s quadrature formula
We choose the anti-Simpson’s 4-point quadrature formula QaS4(f)

I(f) ∼= QaS4(f) =
1

9

[
10

{
f(

√
2

5
) + f(−

√
2

5
)

}
− {f(−1) + f(1)}

]
(16)

and the Simpson’s 1
3
quadrature formula QS3(f)

I(f) ∼= QS3(f) =
1

3
[f(−1) + 4f(0) + f(1)] (17)

From eqn. (16) and eqn. (17), we get

I(f) = QaS4(f) + EaS4(f) (18)

and
I(f) = QS3(f) + ES3(f) (19)

where

EaS4(f) =
1

90
f iv(0) +

64

25× 7!
f vi(0) + · · · (20)

ES3(f) =
−1

90
f iv(0)− 8

3× 7!
f vi(0)− · · · (21)

EaS4(f) and ES3(f) are truncation error due to QaS4 and QS3(f) respectively. The
extended anti-Simpson’s 4-point quadrature formula denoted byDS1(f) is obtained
by taking average linear combination of constituent formulas QaS4(f) and QS3(f)
as follows.
Adding eqn. (18) and eqn. (19), we obtain

2I(f) = [QaS4(f) +QS3(f)] + [EaS4(f) + ES3(f)]

or

I(f) =
1

2
[QaS4(f) +QS3(f)] +

1

2
[EaS4(f) + ES3(f)]

⇒ I(f) = DS1(f) + EDS1(f)

where

DS1(f) =
1

2
[QaS4(f) +QS3(f)] (22)

or

DS1(f) =
1

9

[
f(−1) + 5f

(
−
√

2

5

)
+ 6f(0) + 5f

(√
2

5

)
+ f(1)

]
(23)
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and

EDS1(f) =
1

2
[EaS4(f) + ES3(f)] (24)

Eqn. (22), expresses the desired extended anti-Simpson’s quadrature formula and
eqn. (24) represents the error generated due to this quadrature formula. The
formula eqn. (23) is called extended anti-Simpson’s quadrature formula as it is
developed from the anti-Simpson’s quadrature formula.
Substituting eqn. (20) and eqn. (21) into eqn. (24), Error associated with the
extended anti-Simpson’s quadrature formula

EDS1(f) =
−4

75× 7!
f vi(0)− · · · (25)

We see that first term of EDS1(f) contains 6th order derivative of the integrand,
thus the formula is exact for all polynomials of degree≤ 5. So DS1(f) is of precision
5.

4. Error analysis of the Extended anti-Simpson’s quadrature formula
Asymptotic error estimate of the extended anti-Simpson quadrature formula

(eqn. (23)) is given in theorem 1.

Theorem 2. Let f(x) contains derivatives of all orders in the closed interval
[−1, 1]. Then the error EDS1(f) associated with the rule DS1(f) is given by |
EDS1(f)| ∼= 4

75×7!
| f vi(0) |

Proof. We know that from eqn. (25) EDS1(f) =
−4

75×7!
f vi(0)− · · ·

so | EDS1(f) |∼= 4
75×7!

| f vi(0) |
The error bound of the formula eqn. (24) is given in the theorem 3.

Theorem 3. The error bound of the truncation error for DS1(f) is given by

EDS1(f) |≤
M

180
| η2 − η1 |, η1, η2 ∈ [−1, 1]

where M = max
−1≤x≤1

| f v(x) |
Proof. We have

EaS4(f)
∼=

1

90
f iv(η2), η2 ∈ [−1, 1]

ES3(f)
∼= − 1

90
f iv(η1), η1 ∈ [−1, 1]

Now

EDS1(f) =
1

2
[EaS4(f) + ES3(f)]
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=
1

180

[
f iv(η2)− f iv(η1)

]
=

1

180

∫ η2

η1

f v(x)dx, (assuming η1 < η2)

From this we obtain

| EDS1(f) |=
1

180
|
∫ η2

η1

f v(x)dx |≤ 1

180

∫ η2

η1

| f v(x) | dx

So | EDS1(f) |≤ M
180

| η2 − η1 |.
This shows that the error bound will become smaller if η1, η2 are take sufficiently

closure to each other.

Corollary. The error bound of DS1(f) is given by | EDS1(f) |≤ M
90
, where M =

max
−1≤x≤1

| f v(x) |
Proof. We know from the theorem-3, that

EDS1(f) |≤
M

180
| η2 − η1 |, η1, η2 ∈ [−1, 1]

where M = max
−1≤x≤1

| f v(x) |

choosing, | η1 − η2 |≤ 2, we have | EDS1(f) |≤ M
90

.

4.1. Adaptive Integration Scheme using DS1(f) quadrature formula
An adaptive integration scheme adopted in this paper is designed [3, 4, 6, 9,

10, 11, 12, 13, 14] using DS1(f) and its constituents formulae.

5. Numerical Verifications
5.1. Observation

The results shown in the table-1 & table-2 are diagrammatically represented
in figure-1 & figure-2 respectively. It is observed in table-1 that the precision
of Simpson 1

3
rd rule QS3(f) and anti-Simpson 4-point rule QaS4(f) are same but

due to the construction principle of QaS4(f), the results of the most of the test
integrals are nearly equal when computations are made in non-adaptive mode.
But as observed in table-2, the accuracy of results due to extended anti-Simpson
rule DS1(f) is slightly edge over the existing Boole’s 5-point rule QB5(f) in non-
adaptive environment.

On other hand, the story is some what encouraging in adaptive environment.
Though the rules DS1(f) and QB5(f) are having identical precision, as observed
in table-4 and figure-1(d), in computational results of most of the test integrals
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(a) Graphical analysis of values for I1(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(b) Graphical analysis of values for I2(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(c) Graphical analysis of values for I3(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(d) Graphical analysis of values for I4(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(e) Graphical analysis of values for I5(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(f) Graphical analysis of values for I6(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(g) Graphical analysis of values for I7(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(h) Graphical analysis of values for I8(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

Figure 1: Graphical analysis of value of DS1(f)
and its constituents for the integrals I1(f) to I8(f)
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Table 2: Approximation of integrals (as given in the table-1) Boole’s quadrature
formula QB5(f) and anti-Simpson’s 5-point quadrature formula DS1(f) in non-
adaptive integration scheme

Approximate value Q(f)

Sl. No Integral QB5(f) DS1(f)

1 I1 1.68588495654325 1.68576728136386
2 I2 1.2108041907406 1.2109502585158
3 I3 2.15445682517894 2.1570259765951
4 I4 1.270431508053661 1.27064140142254
5 I5 2.0078103540157 2.00798270261292
6 I6 1.422606859567265 1.422680637059604
7 I7 1.74463240875653 1.74439395549634
8 I8 0.65775660328156 0.6612966724819
9 I9 3.125501569261942 3.142648311930468
10 I10 0.0455889578 0.04079526448

(a) Graphical analysis of values for I9(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

(b) Graphical analysis of values for I10(f)
obtain by different quadrature rules as re-
flected in the table 1 and table 2

Figure 2: Graphical analysis of value of DS1(f)
and its constituents for the integrals I9(f) and I10(f)
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the new rule DS1(f) is better so far as the number of steps and the computational
errors are concerned. Further, if we compare the results of figure-1(c), the new rule
DS1(f) is much more dominating than the constituent rules QS3(f) and QaS4(f).

6. Conclusion
Analysing the observation, we conclude that the extended anti-Simpson’s rule

DS1(f) dominates both its constituent rules QS3(f) and QaS4(f) in non-adaptive
mode.The visibility of this dominance is much more in adaptive environment.
Though the precision of existing Boole’s 5-point QB5(f) and that DS1(f) is same,
clear dominance is seen in case of DS1(f) in adaptive mode. Therefore, DS1(f)
may be adopted as an alternative rule of integration.

Advantage. The precision extension in this method is very simple and straight-
forward unlike Kronord extension.

Scope. The extended quadrature based on anti-Simpson formula can further be
extended using anti-Lobatto and anti-Gaussian formulae.
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